577 research outputs found

    Mastl kinase, a promising therapeutic target, promotes cancer recurrence.

    Get PDF
    Mastl kinase promotes mitotic progression and cell cycle reentry after DNA damage. We report here that Mastl is frequently upregulated in various types of cancer. This upregulation was correlated with cancer progression in breast and oral cancer, poor patient survival in breast cancer, and tumor recurrence in head and neck squamous cell carcinoma. We further investigated the role of Mastl in tumor resistance using cell lines derived from the initial and recurrent tumors of the same head and neck squamous cell carcinoma patients. Ectopic expression of Mastl in the initial tumor cells strongly promoted cell proliferation in the presence of cisplatin by attenuating DNA damage signaling and cell death. Mastl knockdown in recurrent tumor cells re-sensitized their response to cancer therapy in vitro and in vivo. Finally, Mastl targeting specifically potentiated cancer cells to cell death in chemotherapy while sparing normal cells. Thus, this study revealed that Mastl upregulation is involved in cancer progression and tumor recurrence after initial cancer therapy, and validated Mastl as a promising target to increase the therapeutic window

    The Herschel View Of Massive Star Formation In G035.39–00.33: Dense And Cold Filament Of W48 Undergoing A Mini-Starburst

    Get PDF
    The filament IRDC G035.39--00.33 in the W48 molecular complex is one of the darkest infrared clouds observed by \textit{Spitzer}. It has been observed by the PACS (70 and 160\,\micron) and SPIRE (250, 350, and 500\,\micron) cameras of the \textit{Herschel} Space Observatory as part of the W48 molecular cloud complex in the framework of the HOBYS key programme. The observations reveal a sample of 28 compact sources (deconvolved FWHM sizes $20 \msun$. The cloud characteristics we derive from the analysis of their spectral energy distributions are masses of $20-50 \msun$, sizes of 0.1--0.2 pc, and average densities of $2-20 \times 10^{5} \cmc$, which make these massive dense cores excellent candidates to form intermediate- to high-mass stars. Most of the massive dense cores are located inside the G035.39--00.33 ridge and host IR-quiet high-mass protostars. The large number of protostars found in this filament suggests that we are witnessing a mini-burst of star formation with an efficiency of $\sim$15% and a rate density of $\sim40 \msun\,yryr^{-1}\,kpckpc^{-2}within within \sim8pc8 pc^2$, a large area covering the full ridge. Part of the extended SiO emission observed towards G035.39--00.33 is not associated with obvious protostars and may originate from low-velocity shocks within converging flows, as advocated by previous studies

    ATLASGAL-selected massive clumps in the inner Galaxy: I. CO depletion and isotopic ratios

    Full text link
    In the low-mass regime, it is found that the gas-phase abundances of C-bearing molecules in cold starless cores rapidly decrease with increasing density, as the molecules form mantles on dust grains. We study CO depletion in 102 massive clumps selected from the ATLASGAL 870 micron survey, and investigate its correlation with evolutionary stage and with the physical parameters of the sources. Moreover, we study the gradients in [12C]/[13C] and [18O]/[17O] isotopic ratios across the inner Galaxy, and the virial stability of the clumps. We use low-J emission lines of CO isotopologues and the dust continuum emission to infer the depletion factor fD. RATRAN one-dimensional models were also used to determine fD and to investigate the presence of depletion above a density threshold. The isotopic ratios and optical depth were derived with a Bayesian approach. We find a significant number of clumps with a large fD, up to ~20. Larger values are found for colder clumps, thus for earlier evolutionary phases. For massive clumps in the earliest stages of evolution we estimate the radius of the region where CO depletion is important to be a few tenths of a pc. Clumps are found with total masses derived from dust continuum emission up to ~20 times higher than the virial mass, especially among the less evolved sources. These large values may in part be explained by the presence of depletion: if the CO emission comes mainly from the low-density outer layers, the molecules may be subthermally excited, leading to an overestimate of the dust masses. CO depletion in high-mass clumps seems to behave as in the low-mass regime, with less evolved clumps showing larger values for the depletion than their more evolved counterparts, and increasing for denser sources. The C and O isotopic ratios are consistent with previous determinations, and show a large intrinsic scatter.Comment: 20 pages, 17 figures, 38 pages of online material (tables and figures

    New records for the liverwort and hornwort flora of Vietnam, 1

    Get PDF
    After the examination of the Cryptogam collection in the Herbarium of the University of Science, Vietnam National University Ho Chi Minh City (PHH), 25 species proved to be new to Vietnam, including one hornwort and 24 liverworts. Among them, four genera: Denotarisia Grolle, Gongylanthus Nees, Leiomitra Lindb. and Lepicolea Dumort. are new records for the country. Diagnostic characters and illustrations are given for some taxa, as well as locality notes and habitat descriptions are provided for each collecting area

    Large scale IRAM 30m CO-observations in the giant molecular cloud complex W43

    Get PDF
    We aim to give a full description of the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It has previously been identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated an IRAM 30m large program, named W43-HERO, covering a large dynamic range of scales (from 0.3 to 140 pc). We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km/s and a spatial resolution of 12". These maps cover an area of ~1.5 square degrees and include the two main clouds of W43, as well as the lower density gas surrounding them. A comparison with Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at a distance from the Sun of approximately 6 kpc. The resulting intensity cubes of the observed region are separated into sub-cubes, centered on single clouds which are then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared with those derived from Herschel dust maps. The mass of a typical cloud is several 10^4 solar masses while the total mass in the dense molecular gas (>100 cm^-3) in W43 is found to be about 1.9e6 solar masses. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data PDF may imply that those selectively show the gravitationally collapsing gas

    The radiometry of multiple images

    Get PDF

    The W43-MM1 mini-starburst ridge, a test for star formation efficiency models

    Get PDF
    Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We investigate the effects of gas density on the SFE through measurements of the core formation efficiency (CFE). With a total mass of 2×104\sim2\times10^4 M_\odot, the W43-MM1 ridge is one of the most convincing candidate precursor of starburst clusters and thus one of the best place to investigate star formation. Methods: We used high-angular resolution maps obtained at 3 mm and 1 mm within W43-MM1 with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores (MDCs), and, one of the most massive protostellar cores known. An Herschel column density image provided the mass distribution of the cloud gas. We then measured the 'instantaneous' CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results: The high SFE found in the ridge (\sim6% enclosed in \sim8 pc3^3) confirms its ability to form a starburst cluster. There is however a clear lack of dense cores in the northern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density while the SFR steeply decreases with the virial parameter, αvir\alpha_{vir}. Statistical models of the SFR may well describe the outskirts of the W43-MM1 ridge but struggle to reproduce its inner part, which corresponds to measurements at low αvir\alpha_{vir}. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.Comment: 13 pages, 7 figures. Accepted by A&

    Optimal Estimation of Matching Constraints

    Get PDF
    International audienceWe describe work in progress on a numerical library for estimating multi-image matching constraints, or more precisely the multi-camera geometry underlying them. The library will cover several variants of homographic, epipolar, and trifocal constraints, using various different feature types. It is designed to be modular and open-ended, so that (i) new feature types or error models, (ii) new constraint types or parametrizations, and (iii) new numerical resolution methods, are relatively easy to add. The ultimate goal is to provide practical code for stable, reliable, statistically optimal estimation of matching geometry under a choice of robust error models, taking full account of any nonlinear constraints involved. More immediately, the library will be used to study the relative performance of the various competing problem parametrizations, error models and numerical methods. The paper focuses on the overall design, parametrization and numerical optimization issues. The methods described extend to many other geometric estimation problems in vision, e.g. curve and surface fitting
    corecore